Joseph M. Chiusano, Booz Allen Hamilton

August 11, 2003

Federal CIO Council XML Web Services Working Group

“Web Services and Registries” Pilot Plan

Objectives and Outcomes

Objectives

The main objective of the “Web Services and Registries” pilot is to demonstrate the capability of UDDI and ebXML registries to interoperate during Web Services–based collaborations.

Secondary objectives are:

· To demonstrate the capabilities of UDDI for Web Service description registration, maintenance, discovery

· To demonstrate and raise awareness of the capabilities of ebXML Registry for Web Service description registration, maintenance, discovery

Outcomes

The planned outcome is a pilot report detailing the products utilized, use cases executed, and methodologies used. This report will be circulated among various groups, to include:

· Federal CIO Council XML Web Services Working Group
· OASIS E-Government TC
· OASIS/ebXML Registry TC
· OASIS UDDI TC
Pilot Scope/Product Requirements

The pilot will focus on vendor products that implement the following registry specifications:

· UDDI Version 3.0
· OASIS/ebXML Registry Version 2.5
Additionally, products that implement ebXML CPP/A
 Version 2.0 are welcome.
Current Participants

The following registry vendors have expressed interest in being participants:

· Software AG (UDDI)
· Blue Oxide (UDDI and ebXML Registry)
· Yellow Dragon Software (ebXML Registry)
· IWay Software (ebXML Registry)
Amberpoint has also expressed interest in participating from the Web Services monitoring perspective.

ebXML Registry/UDDI “Crosswalk”

The following table represents a “crosswalk” between the ebXML registry and UDDI registry information models. It may be helpful during the pilot. For ebXML registry, it focuses on the Web service-specific constructs:

	Information
	UDDI Construct
	ebXML Registry Construct

	Business Information
	businessEntity
	Organization

	Business’ Web Services
	businessService
	Service

	Web Service Access Point
	bindingTemplate
	ServiceBinding

	Web Service Description
	tModelInstanceInfo
	SpecificationLink

For more details, the pertinent specifications should be consulted.

Pilot Focus

The focus of this pilot will be on a “reachthrough” capability that involves “reaching through” from one registry type (UDDI and ebXML registry) to another. Each registry type will “reach through” to the other registry type to access an object (such as a Web Service description) that resides in the other type of registry. This is possible without the aid of any type of middleware mechanism, using each registry type’s existing features.

A General Scenario
A general scenario will involve at least one “ebXML registry-enabled” trading partner, and at least one “UDDI-enabled” trading partner. Each registry would be used to (at a minimum) register and maintain Web services descriptions, such as WSDL documents. A “UDDI -enabled” trading partner would use the reachthrough capability to access a Web services description that is maintained in an ebXML registry by registering a “record” of that Web services description in their UDDI registry and “reaching through” to the ebXML registry to access that record when necessary. This is shown in the figure below, in which Trading Partner #1 accesses a WSDL document from within Trading Partner #2’s ebXML registry:

[image: image1.wmf]

Effective

In the above figure, the “actual” result is an access by Trading Partner #1 of the WSDL document that is registered in the ebXML registry– however, the “effective” result is as if Trading Partner #1 accessed the ebXML registry directly. In most cases, this would involve read-only access to the WSDL document by the UDDI registry.

A Scenario Example

An example of a scenario in which this capability would be highly valuable is one in which two trading partners create an ebXML Collaboration Protocol Agreement (CPA) from two ebXML Collaboration Protocol Profiles (CPPs) that are maintained in an ebXML registry that describes a collaboration, and this collaboration utilizes a WSDL description that is maintained in the UDDI registry. The “UDDI-enabled” trading partner could maintain records in their UDDI registry that “point to” their CPP and the derived CPA in the ebXML registry in this “reachthrough” manner. Additionally, if the collaboration involves multiple Web Services whose descriptions were stored separately in the UDDI and ebXML registries, a trading partner could access the Web Services description(s) that are maintained in the other registry in this “reachthrough” manner as well.

The Specifications

The reason that this capability is possible without the aid of any type of middleware mechanism is that both the UDDI Version 3.0 specification and OASIS/ebXML Registry Version 2.5 specification (soon to become Version 3.0) have an “HTTP interface” capability. The following is a description of how each registry specification’s HTTP interface capability can be used.

UDDI

Consider the following UDDI tModel that represents a WSDL document. The <overviewURL> value is the URL at which the WSDL document is located:

<tModel tModelKey=”some_urn”>

 <name>My WSDL document</name>

 <description>This WSDL document...</description>

 <overviewDoc>

 <overviewURL useType="wsdlInterface">

 http://example.org/myWSDLdoc.wsdl

</overviewURL>

 </overviewDoc>

 <categoryBag>

 --removed for example purposes--

 </categoryBag>

</tModel>
The following is an example of the OASIS/ebXML Registry Version 2.5 specification’s HTTP interface capability that requests the retrieval of an item (a “RegistryObject”) from an ebXML registry:

http://base_url_of_ebXML_registry/http?interface=QueryManager&method=getRegistryObject¶m-id=urn:uuid:a1137d00-091a-471e-8680-eb75b27b84b6

In the above example, the “getRegistryObject” method of the “QueryManager” registry interface is invoked to retrieve the RegistryObject whose UUID (Universally Unique Identifier) is specified.

Assuming that the UUID listed above is that of a WSDL document that is stored in the ebXML registry, one may replace the <overviewURL> in the UDDI tModel shown earlier above with the above HTTP request as follows:

<tModel tModelKey="some_urn">

 <name>My WSDL document</name>

 <description>This WSDL document...</description>

 <overviewDoc>

 <overviewURL useType="wsdlInterface">

 http://base_url_of_ebXML_registry/http?interface=

QueryManager&method=getRegistryObject¶m-id=

 uuid_of_WSDL_document

 </overviewURL>

 </overviewDoc>

 <categoryBag>

 --removed for example purposes--

 </categoryBag>

</tModel>

This means that whenever the above tModel accessed through its association with a particular bindingTemplate in the UDDI registry, the WSDL document would effectively be retrieved from the ebXML registry. Also, the fact that the WSDL document is being referenced by its UUID allows a UDDI registry administrator to handle the tModel within the UDDI registry (i.e. classify it, replicate it, specify access controls, etc.) independently of how the object is handled within the ebXML registry – and vice-versa. This means that the UDDI record of the object is “insulated” from any administrative updates on the object within the ebXML registry – unless the object is deleted from the ebXML registry.

ebXML Registry

The same general concepts described above would apply for the “ebXML registry to UDDI registry” direction. While ebXML registry’s HTTP interface utilizes UUIDs, UDDI’s HTTP interface utilizes uddiKeys (which are keys for entities published in UDDI registries). An example of an HTTP request in UDDI format is as follows:

http://base_uri_of_UDDI_node?tModelKey=uddi:tempuri.com:fish:interface
In the above example, the XML representation of a tModel whose key is "uddi:tempuri.com:fish:interface" is retrieved.

In the ebXML registry, an “ExternalLink” can be created and associated with a RegistryObject that represents the WSDL document that is stored in the UDDI registry. This ExternalLink would specify the UDDI HTTP request shown above:

<rim:ExternalLink

id="UDDILink"

externalURI="http://base_uri_of_UDDI_node?tModelKey=uddi:tempuri.com:

 fish:interface">

 <rim:Name>

<rim:LocalizedString value="My WSDL document"/>

 </rim:Name>

 <rim:Description>

<rim:LocalizedString value="This WSDL document…"/>

 </rim:Description>

</rim:ExternalLink>

This means that whenever the RegistryObject with which the above ExternalLink is associated is accessed within the ebXML registry, the WSDL document would effectively be retrieved from the UDDI registry.

Operational Plan and Timeline

The general operational plan is as follows:

1. Participants review and approve pilot plan
2. Vendors take time to configure their software to support a basic use case (see “The Specifications” and “Use Cases” sections)

3. An “operational capability” demo is conducted

· This demo will confirm each vendor’s capability to support a “basic” use case;

· It will preferably be conducted online;

4. Vendors take time to configure their software to support all “non-basic” use cases

5. A live “demo rehearsal” is conducted to run “non-basic” use cases, and a “real-world domain” scenario

· This scenario will probably be from the Geospatial domain (work is in progress)
6. A live demo is conducted to demonstrate all use cases

· Perhaps during a meeting of the Federal CIO Council XML Web Services Working Group;

The preliminary timeline for each of the above steps is as follows (time is included for vendors to make adjustments between steps as necessary):
	Step #
	No Later Than

	1
	08/22/03

	2
	09/05/03

	3
	09/12/03

	4
	10/10/03

	5
	10/17/03

	6
	11/30/03

Use Cases

The use cases envisioned for this pilot will fall into 3 general categories:

· Basic: These use cases will demonstrate the basic capabilities required for this pilot.
· Registry-Specific: These use cases are specific to each registry type, and involve only that registry type.
· Advanced: These use cases demonstrate more advanced concepts such as “looping through” each registry type one or more times.
The use cases are described in further detail below.

Basic:

The basic use cases are as follows:

· Use Case B1 (for ebXML registry only): An ebXML registry points at a UDDI registry to access a WSDL document that exists in the UDDI registry;

· Use Case B2 (for UDDI registry only): A UDDI registry points at an ebXML registry to access a WSDL document that exists in the ebXML registry;

Registry-Specific:

The registry-specific use cases are as follows:

· Use Case S1 (for ebXML registry only): An ebXML registry user discovers a WSDL document that is registered in the ebXML registry*;

· Use Case S2 (for UDDI registry only): A UDDI registry user discovers a WSDL document that is registered in the UDDI registry*;

* more specific use cases may be added

Advanced:

The advanced use cases are as follows:

· Use Case A1 (for ebXML registry only): An ebXML CPA is created from 2 CPPs, and one CPP is registered in the ebXML registry and the other in the UDDI registry;

· Use Case A2: Steps are as follows*:

· An ebXML BPSS
 is registered in a UDDI registry as a tModel;

· A company’s (Company A) CPP is registered in the UDDI registry;

· Another company’s (Company B) CPP is registered in an ebXML registry;

· Company A registers a service in the UDDI registry based on the BPSS;

· Company B finds Company A’s service using the UDDI registry;

· Company B locates Company A’s CPP in the ebXML registry;

· A CPA is created from Company A’s and Company B’s CPPs;

* this use case is based on a use case included in the OASIS UDDI TC Technical Note titled “UDDI as the registry for ebXML components”

· Use Case A3: Steps are as follows:

· A CPP is registered in an ebXML registry;

· Another CPP is registered in a UDDI registry;

· The CPP in the ebXML registry references an Organization in the ebXML registry that has a Web service;

· That Organization’s Web service is described by a WSDL document that is registered in the UDDI registry;

· The UDDI registry points at the ebXML registry to access the CPP in the ebXML registry;

· A CPA is created from the two CPPs;

Helpful Documentation

The following documents may be helpful during the pilot:

OASIS/ebXML Registry Information Model Specification Version 2.5:

http://www.oasis-open.org/committees/download.php/2615/ebrim-2.5.pdf
OASIS/ebXML Registry Services Specification Version 2.5:

http://www.oasis-open.org/committees/download.php/2614/ebrs-2.5.pdf

OASIS/ebXML Registry Technical Note: Registering Web Services in an ebXML Registry:

http://xml.coverpages.org/RegisteringWebServices.pdf
UDDI Version 3.0 Specification:

http://uddi.org/pubs/uddi-v3.00-published-20020719.pdf
UDDI Technical Note: UDDI as the registry for ebXML components (draft):

http://www.oasis-open.org/committees/uddi-spec/doc/draft/uddi-spec-tc-tn-uddi-ebxml-20030508.htm
ebXML Collaboration Protocol Profile and Agreement (CPPA) Version 2.0:

http://www.ebxml.org/specs/ebcpp-2.0.pdf
ebXML Business Process Schema Specification Version 1.01:

http://www.ebxml.org/specs/ebBPSS.pdf

WSDL Document #2

Trading Partner #2

Trading Partner #1

 UDDI

 ebXML Registry

� EMBED Word.Picture.8 ���

�

�

�

� ebXML Collaboration Protocol Profile and Agreement.

� ebXML Business Process Schema Specification.

PAGE
1

[image: image2.wmf]

Actual

[image: image3.wmf]

Actual

[image: image4.wmf]

Actual

_1121596567.doc

Effective

