Designing the Smart-Data Enterprise
Get prepared for the 10 ways that semantic computing will impact enterprise IT
by Michael C. Daconta

Posted November 28, 2003
As developers and system architects, our treatment of data has evolved significantly over the course of our careers and, further back, of computing history. In 1971, David Parnas introduced the principle of information hiding to advocate isolating clients form the details of a design. In The Mythical Man-Month (Addison-Wesley: 1995) Frederick Brooks, Jr. stated that data representation is the essence of programming. That same year, Brian Kernighan and P.J. Plauger advised us in The Elements of Programming Style (McGraw-Hill: 1988) to let the data structure your program. More recently, in the essay "The Cathedral and the Bazaar," Eric Raymond proposed the following rule: "Smart data structures and dumb code work a lot better than the other way around."

Besides our general attitude toward data, the tools and techniques for representing and designing data have also changed. Some of those techniques are dataflow diagrams (DFD), entity-relationship models, the Integrated Definition (IDEF) family of models, Unified Modeling Language (UML) class models, Document Type Definitions (DTDs), and XML schemas. Understanding how data evolves, why it does so, and where it is heading will allow you to architect better enterprise systems.

The History of Data
Historically, data began as a second-class citizen locked away in proprietary applications. In the data evolution timeline (see Figure 1) this period is referred to as the age of programs. Data was seen as secondary to the programs processing it. This incorrect attitude gave rise to the expression garbage in, garbage out or GIGO. GIGO basically reveals the flaw in the original argument by establishing the dependency between processing and data. In other words, useful software is wholly dependent on good data. Computing professionals began to realize that data was important and must be verified and protected. Programming languages began to acquire object-oriented facilities that internally made data first-class citizens. However, the data was still kept internal to applications so that vendors could keep data proprietary to their applications for competitive reasons.

Data proliferated in volume and number of formats in the era of personal computers. The most popular formats were the office document formats like Microsoft Word. These data formats and databases had proprietary schemas understood only by the applications processing the data.

The growth of the Internet in the 1980s and the World Wide Web in the 1990s began the shift away from proprietary formats. In 1994, with the Netscape browser, that shift gained widespread adoption and continued to grow throughout the decade. Toward the end of the decade XML began its meteoric rise, and by 2000 many vertical industries were defining open markup languages to better share data and metadata. This trend has accelerated as Web services begin moving from early adopters to mainstream acceptance.

Note that the evolution of data has sped up in recent years, with major shifts occurring more rapidly. This speed is an effect of a more mature understanding of how to model data. We are now moving into a new phase of the data evolution—the age of semantic models—in which the standardization of the World Wide Web Consortium (W3C)'s Ontology Web Language (OWL) will be the catalyst. It is important to understand that data evolution will not end with this phase; there are more fine-grained shifts and more follow-on phases to come.

A key aspect of the data evolution is the ways it has affected software development. Examine the data evolution timeframe from the developer's perspective (see Figure 2), which relates changes in programming languages to the way they treat and manipulate data.

Procedural programming focused on functional decomposition of a task with data in simple structures to be passed into and out of procedures in a processing chain. Thus, data was something to be manipulated and modified by procedures. The implicit attitude is that "data is less important than code."

Object-oriented programming introduced encapsulation, inheritance, and polymorphism. Encapsulation combined the data and the functions that operated on the data into classes. A class is a user-defined data structure template where data members are protected from external manipulation. This concept of protecting data with special keywords and accessor methods put data on equal footing with the methods that manipulated it. Data was as important as the code that processed it, though still specific to that code and therefore not portable.

Data Gets Smart
With the advent of XML and its automated binding to internal data, Model-Driven Architecture (MDA), and runtime-metadata support in .Net and Java, we are entering a new phase of portable data. The crux of this shift is that "data is now more important than code." Though this has not yet been fully realized, the shift is occurring because the goals of data mobility, interoperability, and self-description require it. When you no longer assume that your data is tied to a single application, when it must interoperate with current and future applications both within and external to your organization, and when the data may last long after the life cycle of a single application, you have a new Copernican revolution in which applications are seen as revolving around data instead of the other way around.

The "Semantic Web," as envisioned by Tim Berners-Lee, is a web of machine-processable data in which the data itself is smart. This goal pushes data mobility and description beyond syntactic interoperability toward semantic interoperability. Figure 3 shows the progression of data along a continuum of increasing intelligence. Four stages are shown; however, there will be more fine-grained stages as well as more follow-on stages. The four stages in the diagram progress from data with minimal intelligence to data embodied with enough semantic information to allow us to make inferences about it. Let's discuss each stage:

· Text and databases (pre-XML). Most data are proprietary to an application. Thus, the smarts are in the application and not in the data.

· XML documents for a single domain. Data achieves application independence within a specific domain, with sufficient smarts to move between applications in a single domain. Examples of this are the XML standards in the health care industry, insurance industry, or real estate industry.

· Taxonomies and documents with mixed vocabularies. Data can be composed from multiple domains and classified accurately in a hierarchical taxonomy. In fact, the classification can be used for discovery of data. Simple relationships between categories in the taxonomy can be used to relate and thus combine data. Data is, therefore, now smart enough to be discovered easily and combined sensibly with other data.

· Ontologies and rules. New data can be inferred from existing data by following logical rules. In essence, data are now smart enough to be described with concrete relationships and sophisticated formalisms, where logical calculations can be made on this semantic algebra, which allows the combination and recombination of data at a more atomic level and very fine-grained analysis of data. In this stage, data no longer exists as a blob but as a part of a sophisticated microcosm. An example of this data sophistication is the automatic translation of a document in one domain to the equivalent (or as close as possible) document in another domain.

We can now compose a new definition for the "Semantic Web"—a machine-processable web of smart data. Furthermore, we can define smart data as data that is application-independent, composable, classified, and part of a larger information ecosystem or ontology.

Implications for the Enterprise
Now let's examine the impact of the smart data continuum on enterprise architectures. Here are ten specific ways the smart data continuum will impact enterprise information technology in the next five years.

User context and identity becomes robust and transparent. Improving the relevance of both information retrieval and transactions will require robust user identification and transparent contextual awareness. An example of this is locational awareness when a person accesses the information network through a cell phone or through GPS locator tags such as those proposed in WozNet—wireless technology under development by Wheels of Zeus.

Of course, there is a close connection between identity and security such that encryption, certificates, and digital signatures will be integral to any successful solution. In relation to smart data, locational awareness and context is an example of capturing implicit metadata—automatic capture of existing metadata that is a natural byproduct of some other process. For example, Google's Page Rank algorithm captures implicit metadata about a site by using links to that site as metadata.

Proliferation of Web services, especially document-based Web services. By leveraging XML to bridge computing platform differences, Web services will enable services-oriented architecture (SOA). In terms of the smart data continuum, Web services both produce and consume XML (self-describing data), which increases the availability and incentive for applications to process XML in a self-reinforcing cycle. A key to semantic interoperability between Web services is for architects to focus first on modeling the data and then on processing that data with Web services. To implement that process, architects must craft the Web Services Description Language (WSDL) for their Web services first and use document-style Web services. (I recently wrote a detailed article on this topic for the Open Source Developers Network. See Resources)

Shift to noncontextual modeling for certain classes of applications. Over the years, businesses have used standard document types to easily convey the context of a specific business transaction. For example, a purchase order is a common document shared between companies with little difficulty, even though there may be some variation in specific fields or the order of fields. The shared understanding is facilitated because the context is conveyed or fixed by the document type.

In that same vein, XML documents have a fixed context provided by their root element and governing schema (formerly called the Document Type Definition, or DTD). For example, in the XML.org schema registry, there are many specific document types for each vertical industry. If we examine the Human Resources-XML Consortium Schema for a Resume, we could probably guess most of the fields even without looking at a sample (see Listing 1).

Both contextual and noncontextual modeling is useful. The needs of the specific application will determine whether or not its context should be fixed. In some ways, this is the classic trade-off between flexibility in the face of change versus reliable execution through static processes. For example, fixing the context at the document level is the best method for high-volume static transactions between well-known trading partners. When the environment is stable and the volume is high, it is both easier and more efficient to strictly fix the context of documents and messages to reduce errors and increase throughput. In the opposite situation, where the environment is neither stable nor volume high, flexibility and noncontextual modeling are the best choice.

Noncontextual modeling is a continuum and not a single point. In fact, markup languages have been following the trend toward noncontextual modeling over the last several years through namespaces and modularization. Namespaces divide a set of terms (used as elements or attributes) into domain-specific vocabularies with fixed definitions. Modularization allows namespaces to be mixed and matched to assemble a document (sometimes on the fly) that conveys the desired meaning.

For example, XHTML modularization allows you to mix and match vocabularies inside of HTML documents. Another example is the Extensible Business Reporting Language (XBRL), which uses both modularization and taxonomies for the description of financial statements for public and private companies. The Resource Description Format (RDF) takes the trend toward composable context to its logical conclusion by creating a collection of statements as opposed to a document. Therefore, the context of a set of RDF statements cannot be determined beforehand; it is wholly dependent on the statements themselves and the relationships between the statements.

Ontologies and Properties
Ontologies become commonplace, shared, and integrated into most applications. An ontology is a formal model of a domain that enables logical inference and automated reasoning, such as the model of the human resources domain (see Figure 4). Ontologies use formal semantics to go beyond simple class modeling. The OWL language allows these fine-grained semantic distinctions to be made about properties.

· Transitive Property - denotes a property that if held between entity A and B and between B and C also holds between A and C. So if a fly is smaller than a dog and a dog is smaller than an elephant, then a fly is smaller than an elephant.

· Inverse Property - denotes a property that is the opposite of another property. For example, between the Parent and Child entities, the property has Child in the Parent is the inverse of has Parent in the Child.

· Inverse Functional Property - denotes a property that has a unique value per instance. For example, each United States citizen has a single social security number. An inverse Functional property is equivalent to a database key.

· Symmetric Property - denotes a property that holds between two entities in both directions. For example, if Jack is a relative of Bill, then Bill is a relative of Jack.

Enterprise Application Integration (EAI) moves to Semantic Web services for discovery and composition. As Web services proliferate, they become similar to Web pages in that they are more difficult to discover. Semantic Web technologies will be necessary to solve the Web service discovery problem. There are several research efforts underway to create Semantic Web-enabled Web services. Figure 5 demonstrates the various convergences that combine to form Semantic Web services. The classic composition example is a travel Web service that orchestrates an airline reservation, car rental, and hotel reservation Web service.

Enterprise Information Integration (EII) extends to the desktop, e-mail, and calendaring. EII uses data modeling and registries to enable the federation of all of an organization's data sources. Today this is focused on an organization's major data stores, including relational databases, intranets, and Web services. However, as more desktop applications embrace XML, as Microsoft Office 2003 has done, it becomes easier to extend knowledge capture to every user's local file system.

Additionally, other corporate functions like e-mail and calendaring will be related to other information assets automatically. For example, discussion of an employee in an e-mail will be linked automatically to his or her records in the employee database. The same will apply to company projects, initiatives, and core competencies. Besides efficiency gains, this federation will enable better knowledge transfer and cross-fertilization.

Queries shift from probabilistic to deterministic. Due mostly to a lack of technical familiarity and feelings of inadequacy, users have been trained to query computers in simplistic ways that bear little or no resemblance to how we query human experts. As a new breed of sophisticated users becomes the majority, queries will change from search terms and obscure vocabularies to domain-specific questions. Search terms replace a query with some probability that a small set of keywords accurately describes the user's question. On the other end of the spectrum is a deterministic question that has a precise and exact answer. This shift will accelerate as voice recognition improves and gains mainstream acceptance. Such domain-specific pattern matching differs from natural language recognition, however. For example, if a user types an address into Google, it will return an online map of the address. The more we model the user context and our business domains, our queries become more expressive and the results become more relevant.

The Human Interface
Portlets advance a shift from reusability to interoperability. Corporate portals will become the primary means of aggregating and tailoring both information and applications to specific user communities through a Web interface. A portlet is a small application that generates a single subwindow within a portal. Today, the major focus of portal vendors is to allow the discovery and reusability of portlets between portals. Additionally, the Web Services for Remote Portals (WSRP) specification will standardize how Web services can expose their functionality as portlets. Once reusable portlets proliferate, the focus will shift to interportlet communication and interoperability. In other words, portlets will follow the same trajectory as Web services toward semantic discovery, interoperability, and composition.

Knowledge production and discovery converge. In the course of computing history, much more effort has been spent to improve our ability to create new information (documents, databases, spreadsheets, graphics, presentations, and more) than to discover that information after it is produced. Our storage capacity has far outpaced our discovery mechanisms. Today, more effort is being put toward better discovery techniques, but that solution addresses the symptom instead of the root of the problem. The objective solution is to construct production tools that are integrated with the discovery tools so that information is inherently fine grained, classified, and related (or integrated) at the moment of creation. The new smart-forms technologies (like Microsoft Infopath, Adobe's XML Data Package, and W3C's XForms) are the early beginnings of this trend.

Applications become more network-centric. When you combine portable data with a network of many peer applications, applications will turn to the network to consume and provide services. With the advent of grid computing, those applications may not even know what node in the network will provide those services. Additionally, a producer should assume as little as possible about the consumer of its data. To support these applications, the trend is to put the smarts in the data and not in the application end points.

How can we be sure this evolution will happen and will deliver a return on investment? The evolution of data fidelity and realism has already occurred in many vertical industries and applications, including video games, architecture, computer-aided design, and simulations (weather, military, and so on). Consider how the fidelity differs between the original action arcade game SpaceWar and a high-fidelity combat game such as Halo, for example.

High-fidelity, closed-world models allow you to know your customer better, respond faster, rapidly set up new business partners, improve efficiencies, and reduce operation costs. For dimensions such as responsiveness, timeliness, and customizability, which are matters of degree, moving beyond simple metadata will produce the same orders of magnitude improvement as demonstrated in gaming technology.

The last 40 years have been spent perfecting graphics fidelity. The next 40 years will be spent perfecting data fidelity. The smart data continuum will transform the way we architect enterprise systems to deliver semantic interoperability, network centricity, and robust knowledge management.

About the Author
Michael C. Daconta is the chief scientist of the Advanced Programs Group at McDonald Bradley, where he serves as the chief architect on the DOD's Virtual Knowledge Base Project. He is the author of numerous programming books and articles, including most recently The Semantic Web: A Guide to the Future of XML, Web Services and Knowledge Management (John Wiley & Sons, 2003) and More Java Pitfalls (John Wiley & Sons, 2003). More information is available at www.daconta.net, and you can contact Michael at mdaconta@aol.com.

	Resources

	[image: image1.png]
	•

Association of Computing Machinery
"On the Criteria To Be Used in Decomposing Systems into Modules," David Parnas

•

The Mythical Man-Month: Essays on Software Engineering, Frederick P. Brooks, Jr. (Addison-Wesley: 1995)

•

The Elements of Programming Style, Brian Kernighan and P.J. Plauger (McGraw-Hill: 1988)

•

The Semantic Web: A Guide to the Future of XML, Web Services, and Knowledge Management, Michael C. Daconta, Leo J. Obrst, and Kevin T. Smith (John Wiley & Sons: 2003)

•

Open Source Developers Network
"Philosophical Split Hurts Web Services Adoption," Michael Daconta (July 11, 2003)

•

Human Resources-XML Consortium

•

Extensible Business Reporting Language

•

Semantic Web-Enabled Web Services

•

Microsoft Office 2003

•

Web Services for Remote Portals (WSRP) specification

	[image: image2.png]

	[image: image3.png]
	
Figure 1. Data Evolution Timeline
Each lightning bolt is the catalyst of change toward a new understanding of data. Note that the year ranges are approximations.

	[image: image4.png]

	[image: image5.png]
	
Figure 2. Developer's Perspective on Data
To the application developer, the data evolution timeline is viewed through the correlation of programming paradigms with the relation of data and code.

	[image: image6.png]

	[image: image7.png]
	
Figure 3. The Smart Data Continuum
Data has progressed through four stages of increasing intelligence. (Reprinted with permission from The Semantic Web: A Guide to the Future of XML, Web Services, and Knowledge Management [John Wiley & Sons, 2003]. See Resources.)

	[image: image8.png]

	[image: image9.png]
	
Figure 4. Human Resources Ontology
Ontologies, such as this simple model of the human resources domain, enable logical inference and automated reasoning. (Reprinted with permission from The Semantic Web: A Guide to the Future of XML, Web Services, and Knowledge Management [John Wiley & Sons, 2003]. See Resources.)

	[image: image10.png]

	[image: image11.png]
	
Figure 5. Semantic Web Services
By using an ontology to describe the content and processes of a Web service, a semantic Web service will support the composition of multiple Web services into a single transaction. (Reprinted with permission from The Semantic Web: A Guide to the Future of XML, Web Services, and Knowledge Management [John Wiley & Sons, 2003]. See Resources.)

Resume Schema

Listing 1. This Human Resources-XML Consortium schema for an employment resume provides a shared understanding of a common business document.

[image: image12]
<?xml version="1.0" encoding="UTF-8"?>

<Resume xmlns=

 "http://ns.hr-xml.org/RecruitingAndStaffing/SEP-2_0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

 "http://ns.hr-xml.org/RecruitingAndStaffing/SEP-2_0

 Resume-2_0.xsd">

 <StructuredXMLResume>

 <ContactInfo>

 <PersonName>

 <FormattedName>John Doe</FormattedName>

 </PersonName>

 <ContactMethod>

 <Telephone>

 <FormattedNumber>123-456-7890

 </FormattedNumber>

 </Telephone>

 <InternetEmailAddress>jdoe@fakeaddress.com

 </InternetEmailAddress>

 <PostalAddress>

 <CountryCode>US</CountryCode>

 <Region>MA</Region>

 <Municipality>Brooklyn</Municipality>

 <DeliveryAddress>

 <AddressLine>27 </AddressLine>

 <StreetName>Pine Street</StreetName>

 </DeliveryAddress>

 </PostalAddress>

 </ContactMethod>

 </ContactInfo>

<Objective> To obtain a leadership position in the

 field of Electronic Commerce</Objective>

<EmploymentHistory>

 <EmployerOrg employerOrgType="soleEmployer">

 <EmployerOrgName>General Electric</EmployerOrgName>

 <PositionHistory positionType="directHire">

<!-- remainder omitted for brevity. -->

</Resume>

PAGE
1

