An SOA for the Federal Enterprise
Strategically align your enterprise architecture with the President's management agenda using IBM Rational's 4+1 View Model
by Rick Murphy
	BP at a Glance

	Modeling Federal Architectures
Problem: Comply with the federal government mandate for agencies to align information systems with strategic objectives, including simplified access to services by citizens.
Solution: IBM Rational's 4+1 View Model is used to model a services-oriented architecture that prioritizes service to citizens and meets the requirements of the federal enterprise architecture initiative.

As an enterprise architect, choices about what I model are as important as how I model. To align an enterprise architecture with the President's Management Agenda for Expanded Electronic Government (see "Enterprise Architecture by Legislation," Enterprise Architect Online), artifacts in a strategic information asset base should model key business drivers. This approach is more elegant than reconciling lists of standards or mapping target architectures to reference models.

Probably the most significant driver in the agenda is the call for "simplified delivery of services to citizens." Here I'll show how to better align an enterprise architecture with the President's Management Agenda (PMA), describe why services-oriented architecture (SOA) is the best approach to accomplish this goal, and provide contrasting architectural views that illustrate the significance of what I model. I do this by creating two UML artifacts from IBM Rational's 4+1 View Model strategically aligned with the requirement for simplified citizen services.

Despite being the world's largest single consumer of information technology, the U.S. federal government has failed to achieve the 40 percent productivity gains achieved by the private sector. The PMA identifies the first cause of this failure as an inability to effectively measure the value of information technology investments to citizens. The PMA states "Agencies typically evaluate their IT systems according to how well they serve agency's needs—not the citizen's needs. Systems will often be evaluated by the percentage of time they are working rather than the performance gains they deliver to the programs they support. In general, agencies do not evaluate their IT systems by standards relevant to the work the agency is supposed to do."

If a strategic information asset base contains business cases, capital planning, life cycle and human resource management documents, shouldn't it also contain artifacts that allow us to evaluate our information technology investments and show citizens and the services they receive? These artifacts range from high-level abstractions that visualize technologies for communicating with stakeholders to lower-level abstractions that allow us to bring enterprise architecture to life by forward-engineering code from the artifacts. Unfortunately, many enterprise architectures do not contain these artifacts because they model abstractions indirectly related to key business drivers.

Contrasting Architectural Views
Before I illustrate how to strategically align an enterprise architecture to a citizen-centered, services-oriented model, I present two contrasting architectural views: a capability-driven architecture and a horizontal subsystem view of an application architecture.

A capability-driven architecture models a set of technologies that support an agency's operations. Capabilities could include decision support systems, personalization and membership, document imaging, content management, or others. Capabilities are often mapped across another logical abstraction in an enterprise architecture to show their relation to a subarchitecture. Figure 1 illustrates a capability-driven architecture mapped across the tiers of a J2EE application architecture.

This agency's application architecture logically decomposes into five tiers across which I map four capabilities. Each of the tiers—client, presentation, business, resource, and integration—represents logical responsibilities, not physical subdivisions, in a J2EE application architecture. Each capability crosses one or more tiers. The cross-tier mapping indicates shared responsibility, and the oval shape of the capability enforces the soft nature of the division of responsibilities. Capability-driven architectures are common in enterprise architecture planning because they align well with product acquisition. In Figure 1 you can see the need to acquire a data warehouse, a portal, scanners, and a content management system.

Because capability-driven architectures don't directly communicate the value of information technology investments or the services citizens receive, we should consider them only for a supporting role in a strategic information asset base. It's not that capability-driven architectures are wrong, but there is a better choice to crisply abstract citizens and services in enterprise architecture to reflect the value of information technology investments.

A subsystem view cuts horizontally across an application architecture and, unlike a capability-driven architecture, is not mapped across another logical system decomposition. Subsystems could include logging, optimistic locking, persistence, authentication, or others. Figure 2 illustrates a horizontal subsystem view of an application architecture.

Subsystem architectures focus on technology implementations required to support a service, and they often mask the value of the service. Citizens and the services they receive are not obvious from the artifacts. Because subsystem views lack strategic significance, they too can play only a supporting role in a strategic information asset base. To illustrate strategic alignment between an SOA and "simplified delivery of services to citizens," we'll first need to examine the IBM Rational 4+1 View Model.

IBM Rational's 4+1 View Model
The IBM Rational 4+1 View Model is a use-case-driven, top-level architecture with five views: design, implementation, process, deployment, and use case. The use-case view is at the center of IBM Rational's 4+1 View Model, and use-case diagrams put citizens and the services they receive at the center of an enterprise architecture. Use-case diagrams specify citizens as actors and services as use cases. An actor can be a citizen, a patent attorney, or a war fighter, for example. So, use cases and SOAs apply equally well to defense and civilian architectures. By visualizing citizens and services, we can support high-level planning and evaluation of information technology investments and better align an enterprise architecture with the PMA. Figure 3 illustrates a patent attorney searching a patent database and applying for a patent at the United States Patent and Trademark Office (USPTO).

In comparison to a capability-driven architecture and the horizontal subsystem view of an application architecture, use-case diagrams say a lot with very little. The abstraction is crisp and includes only the patent attorney and the patent registration and patent search services available at USPTO's Web site. The arrows associate the patent attorney with the patent registration and patent search use cases.

Now that I've placed citizens and the services they receive at the center of an enterprise architecture, I next model an SOA based on the patent registration and patent search use cases using a component diagram from the implementation view of IBM Rational's 4+1 View Model.

Deriving an SOA
Services-oriented architectures are often defined in terms of Web services. Although Web services have all the elements of an SOA, J2EE, CORBA, JINI, and WindowsDNA can also be implemented as SOAs. Of course, .Net implies an SOA because it integrates Web services into the WindowsDNA architecture.

As a working definition of SOA, we can say that it is one that exposes a set of reusable software components central to an agency's enduring mission. The services are highly cohesive, loosely coupled, discoverable software components that are decoupled from hardware and network dependencies and that encapsulate the complexities of the underlying implementation. SOAs align strategically with the PMA because they model enduring services to citizens that are central to an agency's mission.

The Office of Management and Budget's (OMB) reference models (see "Federal Enterprise Architecture Resource Center," Enterprise Architect Online, July 3, 2003) also support strategic alignment using SOA. For example, OMB's Business Reference Model identifies three business areas that provide a high-level overview of the operations the federal government performs: services to citizens, support delivery of services, and internal operations and infrastructure. The Service Component Reference Model defines 7 service domains, 29 service types, and a set of service components. That's a pretty strong indication to use SOA to strategically align an enterprise architecture with the PMA and the OMB reference models.

I chose to model an SOA in the implementation view of the IBM Rational 4+1 View Model with a component diagram. A component diagram is at a lower level of abstraction than a use-case diagram. This architecture is modeled based on J2EE best practices and design strategies. I illustrate J2EE concepts with UML stereotypes and design patterns with anchored notes. By assigning roles and responsibilities to the components, I satisfy the definition of an SOA. Figure 4 models the Patent Registration and Patent Search use cases as an SOA.

Here's how I model the SOA you see in Figure 4. PatentRegistrationBean.java plays the central role of the Patent Registration use case. The patent attorney interacts indirectly with PatentRegistrationBean.java through registration.jsp, PatentServlet.java, and RequestProcessor.java. The Session Facade stereotype on PatentRegistrationBean.java indicates I chose to implement this use case with the Session Facade design pattern. At this level of abstraction I haven't yet decided whether I need a Stateful or Stateless Session Bean. I do show by using the EJBHome stereotype on

PatentRegistrationHome.java and the EJBObject stereotype on PatentRegistration.java that the patent registration service is available remotely. And ServiceLocator.java encapsulates the JNDI lookup and discovery of the remote PatentRegistrationHome.java interface as a Singleton design pattern for RequestProcessor.java. PatentRegistrationBean.java delegates insert method calls to PatentDAO.java, which allows the session bean to provide a security and transaction context, but locates the SQL code in a data access object. PatentAuthenticator.java implements the Intercepting Filter design pattern and authenticates only registered patent attorneys to submit a request for a new patent registration.

The Fast Lane Reader design pattern plays the central role in the Patent Search Use Case. Because the search operation is read-only, there's no need for the complexity of an enterprise bean. RequestProcessor.java creates an instance of the PatentDAO.java and reads a list of patents based on the patent attorney's search criteria. As in the Patent Registration use case, the patent attorney interacts indirectly with PatentDAO.java through search.jsp, PatentServlet.java, and RequestProcessor.java. There's no need for ServiceLocator.java in the Patent Search use case because RequestProcessor.java gets a local reference to PatentDAO.java.

Lessons Learned
It's significant that an SOA logically decomposes the application vertically down its tiers, not horizontally across the application as is the case with a horizontal subsystem view of an application architecture. As we have seen, such a design strategically aligns an enterprise architecture with the PMA and the OMB reference models, placing citizens and the services they receive at the center of the architecture. The use-case and implementation views of IBM Rational's 4+1 View Model are highly useful for modeling an SOA accurately, but we have also seen how the choice of what to model is as much or more important than the particular tools or techniques used in modeling.

About the Author
Rick Murphy is a Sun-certified enterprise architect, a practicing member of the Worldwide Institute of Software Architects (WWISA), and a member of the Association for Computing Machinery. Contact Rick at richard.c.murphy@acm.org.
Figure 1. Capability-Driven Architecture

A capability-driven architecture models five application tiers with system capabilities mapped across the tiers.

[image: image1.png]Client

Personalization
and membership,

: Document
Presentation imaging
Content

Business management

Decision

Resource e

Integration

Figure 2. Architecture Subsystem View

The subsystem view illustrates a horizontal cross section of an application architecture, but does not address strategic objectives.
[image: image2.png]< <subsystem>>
Logging

<Iooood

< <subsystem>>
Persistence

< <subsystem>>
Authentication

< <subsystem>>
OptimisticLocking

Figure 3. Use-Case Diagram

Diagramming use cases enables high-level planning and evaluation of technology investments, as in this example for the U.S. Patent and Trademark Office.

[image: image3.png]< <citizen>>
PatentAttorney

Figure 4. SOA Component Diagram

The definition of an SOA is satisfied by this model supporting the Patent Registration and Patent Search use cases.
[image: image4.png]< <ejbobject> < <ejphome>>
PatentRegistration.java _PatentRegistrationHome.java

s i

PAGE
1

